UNIT 5

ME 401 Balancing of linkage

Outline

Unbalance

- Balance Standards
- Balancing
- Balance Machines
- Misalignment

Unbalance

- Perfect Balance
- Rigid Rotor Unbalance
 - Static Unbalance
 - Dynamic Unbalance
- Flexible Rotor Unbalance
 - Critical Speed
 - Mode Shape

Perfect Balance

- A <u>rigid rotor</u> has a <u>uniform speed</u> of rotation about one of its three <u>principal</u> <u>inertia axes</u>.
- The <u>rigid rotor</u> rotates about the axis of rotation without <u>wobbing</u>; i.e., <u>the</u> <u>principal axis coincides with a line fixed</u> <u>in space</u>.

Rigid Rotor Unbalance

- Static Unbalance (Static Balancing)
- Couple Unbalance (Two-Plane Balancing)
 - Static Balance + Nonzero moment about center of mass when rotates
 - Tilting of the principal inertia axis about the shaft axis at the center of mass
- Dynamic Unbalance (Two-Plane Balancing)
 - Static Unbalance + Couple Unbalance
 - The principal inertia axis inclined to the geometric shaft axis

Rigid Rotor Unbalance

Definition of Unbalance

- *M*: mass of a thin disc (unit: *g*)
- *m*: unbalance mass (unit: *g*)
- r: distance between the unbalance mass and axis of rotation (unit: mm)
- e: eccentricity, specific unbalance (unit: mm)
- F: centrifugal force (unit: μN)
- ω : speed of rotation (unit: *rad/sec*)

Rigid Rotor Unbalance

$$F = mr\omega^2$$

$$= Me\omega^2$$

• Unbalance (*u*):

u = mr

• Specific Unbalance (e):

$$e = \frac{mr}{M}$$

Flexible Rotor Unbalance

- Critical Speed
- Mode Shape

Effects of Unbalance

- Synchronous with rotation speed
- Radial in the line of action
- Vector quantities
- Result of a discrepancy between the geometric- and mass-symmetries of a rotor

Sources of Unbalance

- Dissymmetry
- Non-homogeneous material
- Distortion at service speed
- Eccentricity
- Misalignment of bearing
- Shifting of parts due to plastic deformation of rotor parts
- Hydraulic or aerodynamic unbalance (cavitation or turbulence)
- Thermal gradients

Balance Standards

ISO 1940 (VDI 2060)

- Balance Quality of Rotating Rigid Body
- Define the acceptable residual unbalance to the maximum service speed of the rotor
- $G = e\omega$
 - G: Quality Grade
 - e: Specific Unbalance (mm)
 - ω: speed of rotation (unit: *rad/sec*)

Balance Standards

• ISO 2372 (VDI 2056)

 Mechanical vibration of machines with operating speeds from 10-200 rev/sec

Balancing

Rigid Rotor Balancing

- Static Balancing
 - Static Balancing Machines (see next topic)
- Single-Plane Balancing
 - Three-Point Method (Siebert's Construction)
 - Single-Point Phase-Angle Method
- Two-Plane Balancing
- Flexible Rotor Balancing

Three-Point Method (Siebert's Construction)

- Equipment: Vibration Meter and an Accelerometer
- Procedure:
 - 1. The initial unbalance is measured. (V_0)
 - 2. A trial mass is used to introduce a known unbalance by attaching it to the rotor at the same radius to be used for the final correction mass.
 - 3. Three test runs are carried out with the trial mass placed at 0° , 120°, 240° on the rotor. (V₁, V₂, V₃)
 - 4. Geometrically, Siebert construction can be used to evaluate the correction values.
 - 5. Three vectors of equal length, corresponding to initial unbalance V_0 , at 0°, 120°, 240° respectively, are drawn out from the origin.

Three-Point Method (Siebert's Construction)

- 6. Vectors corresponding to $V_T (0^\circ)$, $V_T (120^\circ)$, $V_T (240^\circ)$ are constructed by centering a compass point on each of the V_0 vectors in turn: the point of intersection of these arcs enables the vectors corresponding to the trial mass alone to be constructed.
- 7. The correction mass can be calculated directly.

Single-Point Phase-Angle Method

Procedure:

- 1. An initial reading of vibration amplitude, $|V_0|$, and phase angle, α_0 (with reference to a fixed point on the rotor) are obtained.
- Machine is stopped and a known trial mass M_T is fixed to the rotor at some arbitrary position. Running the machine at the same speed as before yields a new vibration amplitude, |V₁|, and phase angle, α₁ enabling a vector diagram to be constructed directly.
- 3. The difference $(V_1 V_0)$ represents the effect of trial mass, M_T , on the measured vibration.

Single-Point Phase-Angle Method

4. The size of the correction mass is given by

$$M_{c} = \frac{|V_{0}|}{|V_{1} - V_{0}|} M_{T}$$

placed at an angle α_c to counteract V₀.

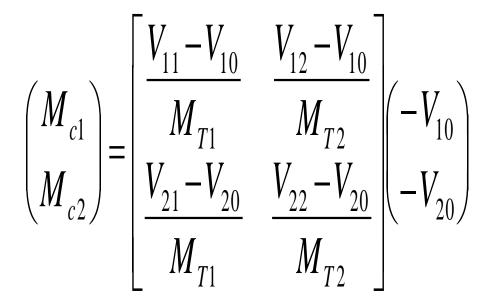
5. Where non-linearities, or incorrect choice of trial mass, do not allow acceptable residual unbalance to be achieved in the first run, it may be necessary to repeat the procedure.

Two-Plane Balancing

Procedure:

- 1. The initial condition of unbalance is assessed measuring $|V_{10}|$, α_0 and $|V_{20}|$, β_0 . (β signifies phase in the 2nd measuring plane.)
- 2. A trial mass M_{T1} is placed on correction plane 1, measuring $|V_{11}|$, α_1 and $|V_{21}|$, β_1 .
- 3. A trial mass M_{T2} is placed on correction plane 2, measuring $|V_{12}|$, α_2 and $|V_{22}|$, β_2 .
- 4. It can be seen that:

 $(V_{11} - V_{10})$: effect of M_{T1} at measuring position 1.


 $(V_{12} - V_{10})$: effect of M_{T2} at measuring position 1.

 $(V_{21}-V_{20})$: effect of M_{T1} at measuring position 2.

 $(V_{22} - V_{20})$: effect of M_{T2} at measuring position 2.

Two-Plane Balancing

5. To balance the rotor, correction masses should be placed in planes 1 and 2 to generate vibrations equal in magnitude but opposite in direction to V_{10} and V_{20} .

Flexible Rotor Balancing

Procedure:

5.

.

- 1. The rotor is rotated at a speed less than ½ the rotor's first flexural critical speed and balanced using a rigid-rotor balancing technique. Balancing corrections are performed at the end planes to reduce the original amount of unbalance to 3 or 4 times the final balance tolerance.
- 2. Correction for the First Flexural Mode (V Mode).
- 3. Correction for the Second Flexural Mode (S Mode).
- 4. Correction for the Third Flexural Mode (W Mode).
- 6. Final Balancing at Service Speed

Balance Machines

- Gravity Balancing Machines
 - Non-rotating Balancers
 - Static Balancing
- Centrifugal Balancing Machines
 - Static and Dynamic Balancing
 - Soft-Bearing Balancing Machines
 - Hard-Bearing Balancing Machines